高中数学:不等式 - 柯西不等式
高中数学:柯西不等式
一、柯西不等式高中公式
定理 1:二维柯西不等式的代数形式
设 a, b, c, d 均为实数
(a²+b²)( c²+d²) ≥ (ac+bd)² ,其中当且仅当 ad = bc时,等号才成立。
定理 2:柯西不等式的向量形式
设 α,β为平面上的两个向量,则
|α|·|β|≥|α·β|,其中当且仅当两个向量方向相同或相反(即两个向量共线)时,等号成立。
也就是β是零向量,或存在实数 k,使α=kβ时,等号才成立。
定理 3:三角不等式
设 x₁, y₁, x₂, y₂, x₃, y₃ 为任意实数
则:[(x₁-x₂)²+(y₁-y₂)²]½+[(x₂-x₃)²+(y₂-y₃)²]½≥[(x₁-x₃)²+(y₁-y₃)²]½。
当且仅当 P1(x₁, y₁),P2(x₂, y₂),0(0, 0)三点共线且 P1, P2 在点 O 两旁时,等号成立。
二、柯西不等式6个常考基本题型
二维形式的柯西不等式
扫描二维码推送至手机访问。
特别声明:
本站属于公益性网站,纯粹个人原因(陪孩子学习便于查询和教授),网站部分内容收集于网络,仅供学生和老师参考、交流使用,请勿用作其他商业收费用途。
如果网站内容能给你带来提升,那便是我经营此网站的初衷。网站相关内容如有问题,请及时提出,我在此谢谢!
本站尊重原创并对原创者的文章表示肯定和感谢,如有侵权请联系删除!针对本站原创内容,本站也欢迎转载,如需转载请注明出处。